Další aktuality

NATURE: 31. 1. 2013

NATURE: 31. 1. 2013

NATURE: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants

"Mitochondrial DNA mutations transmitted maternally within the oocyte cytoplasm often cause life-threatening disorders. Here we explore the use of nuclear genome transfer between unfertilized oocytes of two donors to prevent the transmission of mitochondrial mutations. Nuclear genome transfer did not reduce developmental efficiency to the blastocyst stage, and genome integrity was maintained provided that spontaneous oocyte activation was avoided through the transfer of incompletely assembled spindle–chromosome complexes. Mitochondrial DNA transferred with the nuclear genome was initially detected at levels below 1%, decreasing in blastocysts and stem-cell lines to undetectable levels, and remained undetectable after passaging for more than one year, clonal expansion, differentiation into neurons, cardiomyocytes or β-cells, and after cellular reprogramming. Stem cells and differentiated cells had mitochondrial respiratory chain enzyme activities and oxygen consumption rates indistinguishable from controls. These results demonstrate the potential of nuclear genome transfer to prevent the transmission of mitochondrial disorders in humans."

http://www.nature.com/nature/journal/v493/n7434/full/nature11800.html

 

NATURE: Towards germline gene therapy of inherited mitochondrial diseases

"Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg’s cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle–chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls."

http://www.nature.com/nature/journal/v493/n7434/full/nature11647.html

 

SCIENCE: Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition

"Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)–β pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer."

http://www.sciencemag.org/content/339/6119/580.abstract

 

SCIENCE: Cancer Cell Phenotypes, in Fifty Shades of Grey

"Intratumor heterogeneity refers to biological differences between malignant cells originated within the same tumor. Possible explanations for this include genetic heterogeneity (resulting from the inherent genetic instability of cancer combined with evolutionary dynamics) and cell differentiation hierarchies in tumor cell populations (13). However, the results of Kreso et al. (4) on page 543 of this issue strongly suggest that biological differences between tumor cells can be due to additional mechanisms."

http://www.sciencemag.org/content/339/6119/528.summary

 

SCIENCE: Gut Microbiomes of Malawian Twin Pairs Discordant for Kwashiorkor

"Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin pairs remained well nourished, whereas 43% became discordant, and 7% manifested concordance for acute malnutrition. Both children in twin pairs discordant for kwashiorkor were treated with a peanut-based, ready-to-use therapeutic food (RUTF). Time-series metagenomic studies revealed that RUTF produced a transient maturation of metabolic functions in kwashiorkor gut microbiomes that regressed when administration of RUTF was stopped. Previously frozen fecal communities from several discordant pairs were each transplanted into gnotobiotic mice. The combination of Malawian diet and kwashiorkor microbiome produced marked weight loss in recipient mice, accompanied by perturbations in amino acid, carbohydrate, and intermediary metabolism that were only transiently ameliorated with RUTF. These findings implicate the gut microbiome as a causal factor in kwashiorkor."

http://www.sciencemag.org/content/339/6119/548.abstract