
NATURE: 20. 3. 2014
Comprehensive molecular characterization of urothelial bladder carcinoma
"Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell-cycle regulation, chromatin regulation, and kinase signalling pathways, as well as 9 genes not previously reported as significantly mutated in any cancer. RNA sequencing revealed four expression subtypes, two of which (papillary-like and basal/squamous-like) were also evident in microRNA sequencing and protein data. Whole-genome and RNA sequencing identified recurrent in-frame activating FGFR3–TACC3 fusions and expression or integration of several viruses (including HPV16) that are associated with gene inactivation. Our analyses identified potential therapeutic targets in 69% of the tumours, including 42% with targets in the phosphatidylinositol-3-OH kinase/AKT/mTOR pathway and 45% with targets (including ERBB2) in the RTK/MAPK pathway. Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalities."
http://www.nature.com/nature/journal/v507/n7492/full/nature12965.html
Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging
"The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt1. In addition to the Lgr5 marker, intestinal stem cells have been associated with other markers that are expressed heterogeneously within the crypt base region1, 2, 3, 4, 5, 6. Previous quantitative clonal fate analyses have led to the proposal that homeostasis occurs as the consequence of neutral competition between dividing stem cells7, 8, 9. However, the short-term behaviour of individual Lgr5+ cells positioned at different locations within the crypt base compartment has not been resolved. Here we establish the short-term dynamics of intestinal stem cells using the novel approach of continuous intravital imaging of Lgr5-Confetti mice. We find that Lgr5+ cells in the upper part of the niche (termed ‘border cells’) can be passively displaced into the transit-amplifying domain, after the division of proximate cells, implying that the determination of stem-cell fate can be uncoupled from division. Through quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed ‘central cells’, experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5+ cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem-cell maintenance in which a dynamically heterogeneous cell population is able to function long term as a single stem-cell pool."
http://www.nature.com/nature/journal/v507/n7492/full/nature12972.html
-
17. 02. 2025
Bezpečnost a účinnost opakovaného podání kmenových buněk u amyotrofické laterální sklerózy
-
17. 02. 2025
Výsledky léčby osteoartrózy vlastními kmenovými buňkami z tukové tkáně
-
05. 02. 2025
Kmenové buňky v léčbě osteoartrózy kolenního kloubu
-
28. 01. 2025
Využití mikrofragmentů tukové tkáně v léčbě osteoartritidy kolene
-
21. 01. 2025
Exosomy kmenových buněk jako léčba periodontitidy