
BLOOD: 31. 10. 2013
BLOOD: Hematopoietic cell transplantation and HIV cure: where we are and what next?
"The report of the so-called Berlin patient cured of HIV with hematopoietic stem cell transplantation and a few other studies raised tremendous hope, excitement, and curiosity in the field. The National Heart, Lung and Blood Institute of the National Institutes of Health convened a Working Group to address emerging heart, lung, and blood research priorities related to HIV infection. Hematopoietic cells could contribute to HIV cure through allogeneic or autologous transplantation of naturally occurring or engineered cells with anti-HIV moieties. Protection of central memory T cells from HIV infection could be a critical determinant of achieving a functional cure. HIV cure can only be achieved if the virus is eradicated from reservoirs in resting T cells and possibly other hematopoietic cells. The Working Group recommended multidisciplinary efforts leveraging HIV and cell therapy expertise to answer the critical need to support research toward an HIV cure."
http://bloodjournal.hematologylibrary.org/content/122/18/3111.abstract
BLOOD: Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice
"Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ−/− mice, each transplanted with ∼105 of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo."
http://bloodjournal.hematologylibrary.org/content/122/18/3129.abstract
-
17. 02. 2025
Bezpečnost a účinnost opakovaného podání kmenových buněk u amyotrofické laterální sklerózy
-
17. 02. 2025
Výsledky léčby osteoartrózy vlastními kmenovými buňkami z tukové tkáně
-
05. 02. 2025
Kmenové buňky v léčbě osteoartrózy kolenního kloubu
-
28. 01. 2025
Využití mikrofragmentů tukové tkáně v léčbě osteoartritidy kolene
-
21. 01. 2025
Exosomy kmenových buněk jako léčba periodontitidy